9 research outputs found

    Rational quadratic Bézier spirals

    Get PDF
    A quadratic Bézier representation withholds a curve segment with free from loops, cusps and inflection points. Furthermore, this rational form provides extra freedom to generate visually pleasing curves due to the existence of weights. In this paper, we propose sufficient conditions for rational quadratic Bézier curves to possess monotonic increasing/decreasing curvatures by means of monotone curvature tests which are based on the derivative of curvature functions. We have derived a simple interval of the middle weight that assures the construction of a family of rational quadratic Bézier curves to be planar spirals, which is characterized by the turning angle, end curvatures and the chords of control polygon. The proposed formulation can be used by CAD systems for aesthetic product design, highway/railway design and robot trajectory design avoiding unwanted curvature oscillations

    Fuzzy interpolation rational bicubic bezier surface

    Get PDF
    This paper introduces fuzzy interpolation rational bicubic Bezier surface (later known as FIRBBS) which can be used to model the fuzzy data forms after defining uncertainty data by using fuzzy set theory. The construction of FIRBBS is based on the definition of fuzzy number concept since we dealing with the real uncertainty data form and interpolation rational bicubic Bezier surface model. Then, in order to obtain the crisp fuzzy solution, we applied the alpha-cut operation of triangular fuzzy number to reduce the fuzzy interval among those fuzzy data points(FDPs). After that, we applied defuzzification method to give us the final solution of getting single surface which also knows as crisp fuzzy solution surface. The practical example also is given which represented by figures for each processes. This practical example take the fuzzy data of lakebed modeling based on uncertainty at z-axis(depth)

    Aesthetic spiral for design

    Get PDF
    A planar spiral called Generalized Log Aesthetic Curve segment (GLAC) has been proposed using the curve synthesis process with two types of formulation; ρ-shift and κ-shift. Both methods were carried out by extending the formulation of Generalized Cornu Spiral (GCS) in a similar manner to the Log Aesthetic Curve (LAC). The family of GLAC comprises of planar curves of high quality such as GCS, LAC, clothoid, logarithmic spiral and circle involute. The GLAC segment has an additional parameter to determine its shape as compared to GCS and LAC segment, hence an extra constraint can be satisfied when shaping the GLAC segment. The last section of the paper shows a numerical example

    Generalizations of fuzzy linguistic control points in geometric design

    No full text
    Control points are geometric primitives that play an important role in designing the geometry curve and surface. When these control points are blended with some basis functions, there are several geometric models such as Bezier, B-spline and NURBS(Non-Uniform Rational B-Spline) will be produced. If the control points are defined by the theory of fuzzy sets, then fuzzy geometric models are produced. But the fuzzy geometric models can only solve the problem of uncertainty complex. This paper proposes a new definition of fuzzy control points with linguistic terms. When the fuzzy control points with linguistic terms are blended with basis functions, then a fuzzy linguistic geometric model is produced. This paper ends with some numerical examples illustrating linguistic control attributes of fuzzy geometric models

    Lines of Curvature for Log Aesthetic Surfaces Characteristics Investigation

    No full text
    Lines of curvatures (LoCs) are curves on a surface that are derived from the first and second fundamental forms, and have been used for shaping various types of surface. In this paper, we investigated the LoCs of two types of log aesthetic (LA) surfaces; i.e., LA surfaces of revolution and LA swept surfaces. These surfaces are generated with log aesthetic curves (LAC) which comprise various families of curves governed by α. First, since it is impossible to derive the LoCs analytically, we have implemented the LoC computation numerically using the Central Processing Unit (CPU) and General Processing Unit (GPU). The results showed a significant speed up with the latter. Next, we investigated the curvature distributions of the derived LoCs using a Logarithmic Curvature Graph (LCG). In conclusion, the LoCs of LA surface of revolutions are indeed the duplicates of their original profile curves. However, the LoCs of LA swept surfaces are LACs of different shapes. The exception to this is when this type of surface possesses LoCs in the form of circle involutes

    Aesthetic Design with Log-aesthetic Curves and Surfaces

    No full text
    1.Introduction 2.Log-aesthetic Curves 3.Log-aesthetic Spline 4.Variational Formulation of Aesthetic Shapes 5.ConclusionsBézier, B-Spline and NURBS are de facto flexible curves developed for various design intent. However, these curves possess complex curvature function complicating the process of aesthetic shape design. In order to shorten the process, we introduce the fundmental equations of aesthetic curves and surfaces. This paper elaborates on the technicalities of Log-Aesthetic (LA) curves and surfaces along with its practical application for industrial design. It is anticipated that the emerging LA curves and surfaces have good prospects to be the standards for designing aesthetic shapes

    Analysis of Drag Coefficients around Objects Created Using Log-Aesthetic Curves

    No full text
    A fair curve with exceptional properties, called the log-aesthetic curves (LAC) has been extensively studied for aesthetic design implementations. However, its implementation in terms of functional design, particularly hydrodynamic design, remains mostly unexplored. This study examines the effect of the shape parameter α of LAC on the drag generated in an incompressible fluid flow, simulated using a semi-implicit backward difference formula coupled with P2−P1 Taylor–Hood finite elements. An algorithm was developed to create LAC hydrofoils that were used in this study. We analyzed the drag coefficients of 47 LAC hydrofoils of three sizes with various shapes in fluid flows with Reynolds numbers of 30, 40, and 100, respectively. We found that streamlined LAC shapes with negative α values, of which curvature with respect to turning angle are almost linear, produce the lowest drag in the incompressible flow simulations. It also found that the thickness of LAC objects can be varied to obtain similar drag coefficients for different Reynolds numbers. Via cluster analysis, it is found that the distribution of drag coefficients does not rely solely on the Reynolds number, but also on the thickness of the hydrofoil

    Analysis of Drag Coefficients around Objects Created Using Log-Aesthetic Curves

    No full text
    A fair curve with exceptional properties, called the log-aesthetic curves (LAC) has been extensively studied for aesthetic design implementations. However, its implementation in terms of functional design, particularly hydrodynamic design, remains mostly unexplored. This study examines the effect of the shape parameter α of LAC on the drag generated in an incompressible fluid flow, simulated using a semi-implicit backward difference formula coupled with P2−P1 Taylor–Hood finite elements. An algorithm was developed to create LAC hydrofoils that were used in this study. We analyzed the drag coefficients of 47 LAC hydrofoils of three sizes with various shapes in fluid flows with Reynolds numbers of 30, 40, and 100, respectively. We found that streamlined LAC shapes with negative α values, of which curvature with respect to turning angle are almost linear, produce the lowest drag in the incompressible flow simulations. It also found that the thickness of LAC objects can be varied to obtain similar drag coefficients for different Reynolds numbers. Via cluster analysis, it is found that the distribution of drag coefficients does not rely solely on the Reynolds number, but also on the thickness of the hydrofoil
    corecore